Top 100 Clean Energy Solutions nomination

EnergyNest was just nominated as one of the world’s Top 100 Clean Energy Solutions presented at Mission Innovation’s fourth Ministerial event in Vancouver. Mission Innovation is a global initiative of 24 countries which committed to promoting clean energy innovation at the 2015 COP21 summit in Paris.

Electrification of Industry is EUR 200+ bn. market opportunity by 2030

Electrical energy storage systems claim to have the edge, but are they actually addressing the “elephant in the room”? Securing stable, cost-efficient energy for the manufacturing industry and flexibilizing power generation will be key for accommodating the rising tide of renewables and ultimately combatting climate change.  

How often have you heard that energy storage will be the key technology for enabling the ongoing energy transition? Quite often we suppose. How often have you heard that electrical battery storage systems such as Lithium-ion, Lead acid-, Sodium and Flow batteries will lead this charge? Equally often we presume.

The burgeoning energy storage market no doubt represents a huge opportunity for investors, industry, power sector and the like, but so far, the spread of energy storage technology has primarily been concentrated in communication technologies, mobility and transportation sector. Electrical battery storage systems used to service the power grid, which in fact provides power to electric vehicles, is still relatively minor comparatively (4 GW global installed capacity excluding Pumped hydro in 2018) – but expected to incur strong growth over the coming years (IEA forecast 106 GW installed global capacity by 2030)*. Still high capital costs constitute a factor hampering widespread dissemination despite significant cost reductions over the last decade. Moreover, their usage is currently limited to short-term storage for the provision of primary and ancillary services for example as frequency regulation and voltage support for the grid. The market value of battery energy storage systems was estimated at just below USD 2 billion in 2018 but is expected to surge at a CAGR of 33,9% reaching a market value of USD 8,54 billion by 2023 p.a.**. Other studies show the market value by 2024 could in fact reach USD 14 billion p.a.***. The cumulative market for batteries in the period 2020-2030 could total as much as EUR 89 billion≠. Sizeable indeed.

So, what is the “elephant” we are referring to? A recent study EnergyNest conducted with Aurora Energy Research resulted in some very interesting findings: the potential for storing high temperature heat in Thermal Batteries represents a cumulative global market opportunity over EUR 300 billion by 2030, more than 3 times the total market for utility scale electrical batteries. More importantly, Thermal Batteries will have a crucial impact on decarbonizing cornerstone industrial sectors such as Chemicals, Petrochemicals, Food & Beverages, Textiles, Metals, Minerals, etc. by means of a) making electrification cheaper by taking advantage of increase low price periods, b) making electrification cleaner by increase the share of renewable power, and c) increasing energy efficiency within existing processes through waste heat recovery. The industrial sector alone accounts for two-thirds of this market opportunity by 2030 – electrification of manufacturing and waste-heat-recovery combined.

Let’s have a closer look at this tremendous industrial lever that can be lifted. The above-mentioned energy-intensive industries require large quantities of high temperature heat in their manufacturing process. Vast quantities of waste heat can rather be recovered, stored and brought back into processes, or used to generate electricity, thereby reducing fossil energy consumption and CO2 footprint. Furthermore, innovation-focused companies are increasingly looking to rely partly or entirely on renewable-based energy for powering their manufacturing activities and reducing the cost impact of carbon. But the increased proliferation of renewables, along with their inherent intermittency, will equally result in increased price volatility in power markets. EnergyNest provides eco-conscious companies for example in the Food & Beverages industry, the tech-means to convert low-priced renewable electricity into process steam that is stored and dispatched when required, or when electricity prices are high. Steam from fossil sources is likely to get increasingly expensive due to rising carbon and gas prices. Germany, for instance, is a heavily industrialized country with the second highest electricity prices for end-consumer world-wide. Consequently, enabling companies to benefit from falling cost of power from renewables and insulating companies from increasing price volatilities to trigger industrial scale transition toward green energy will become an industry trend where significant value can be achieved. And on another, yet directly connected note: you must admit, “green beer” does sound a lot better, doesn’t it?

And let’s not forget thermal power: Power generation across the globe is still predominantly thermal. The ability to flexibly follow real-time load demands and avoid costly ramping in volatile generation scenarios doesn’t just save money or allow plants to provide additional services to the power grid, but also reduces their impact on the environment. This is not an argument to keep coal alive. Quite the opposite, it is an opportunity for low-carbon sources like Natural gas, Biomass and Energy from Waste plants to provide the much-needed balancing of renewables while coal is being phased out. This constitutes another EUR 100 bn. opportunity in addition to industry for Thermal Batteries.

Ultimately, the potential thermal storage market is forecasted to be a significantly larger than the much “hyped” electrical batteries by 2030, yet paradoxically thermal storage solutions seem largely to have been overlooked until now. Moreover, with a levelized cost of storage down to 1,5 €¢/kWh for Thermal Batteries at present, constituting a 10-fold cost reduction compared to state-of-the-art electrical battery systems on the market° – our common approach needs rethinking. Clearly, electrical batteries play an important role, but if deep and systematic decarbonization of our energy and manufacturing systems are to become a reality, and the environmental targets we have set achievable – we need to start applying the solutions that will in fact make the biggest impact.




*** Wood Mackenzie Power & Renewable’s report. “Global Energy Storage Outlook 2019: 2018 Year in Review and Outlook to 2024”.

≠ Aurora Energy Research 2019

° Lazard LCOS V4.0: Unsubsidized LCOS $/MWh In-front-of-the-meter, Wholesale

EnergyNest and AC Boilers have signed a Memorandum of Understanding

As of March 29, 2019 EnergyNest and AC Boilers have signed a Memorandum of Understanding for the future collaboration. Our joint efforts are focusing on the implementation of the Thermal Battery technology in steam power plants (e.g. biomass, combined cycle and waste-to-energy) as well as industrial steam grids.

Steam based Thermal Batteries will boost flexibility of steam power plants – an aspect that not only will enable these power plants to balance high shares of renewables on the grid but will also increase profitability. Industrial steam grids will benefit largely from increased energy efficiencies as well as the replacement of fossil fuels with renewable energy via Thermal Batteries.

With over 150 years of experience in steam generation and burner technology and a track record of 1000 units exceeding 80,000 MW installed worldwide, AC BOILERS SpA, formerly Ansaldo Caldaie, is the largest Italian original technology Boiler Manufacturer, providing the full range of steam generator technologies (

EnergyNest has been awarded a SME-I phase 2 project grant

EnergyNest has been awarded a SME-I phase 2 project grant by the EU Horizon 2020 program. The SME Instrument is part of the European Innovation Council (EIC) pilot that supports top class innovators, entrepreneurs and small companies with funding opportunities and acceleration services. For the first round in 2019, the application success rate was < 4%. The objective of the respective project is to demonstrate EnergyNest’s Thermal Battery system at a commercially operated power plant, where waste-heat will be recovered, stored and dispatched at the time of highest value to improve the plant’s energy efficiency and reduce its CO2 footprint. The demonstration plant will familiarize our customers with the Thermal Battery technology, establishing trust in its performance, benefits and our capabilities to execute commercial projects.

EnergyNest has developed a breakthrough Thermal Battery solution that addresses three of the EU 2020 Energy goals, namely reducing greenhouse gas emissions by at least 20%, increase the share of renewable energy to at least 20% of consumption, and achieve energy savings of 20% or more. By storing energy in the form of heat rather than electricity our technology unlocks a vast new market that has so far been largely overlooked: the Heat-2-Value opportunity. Energy-intensive industries and many thermal power plants waste large quantities of high-temperature heat. The Thermal Battery recovers, stores and discharges this heat upon demand to produce electricity, process steam/heat, district heating and even cooling. Our customers make money with the Thermal Battery by reducing their consumption of fuel and emission of greenhouse gases. Even with a conservative market uptake we can save more than 500 million tons of CO2 from 2020 to 2040.

Syncing thermal power plants with future renewable baseload

Ultimately, coal will be replaced by renewable energy. This is fantastic! Already now coal power plants are being converted to burn biomass: Denmark’s largest power station has replaced coal with wood chips and straw.

Syncing thermal power plants with future renewable baseload
Syncing thermal power plants with future renewable baseload


EnergyNest offers a solution not just during the transition to fully renewable electricity but will also remain an integral part of future sustainable power systems: ultra-low cost and directly integrated into the steam cycle. Only plants with the ability to rapidly adjust power output to follow variable renewable energy will matter in the future. Due to their low marginal cost and zero emissions, wind- and solar energy are bringing conventional power plants out of their comfort zone – from traditional, rigid “baseload beasts” to peaker plants. This implies more frequent starts/stops, cycling and operation at minimum power output. It also implies more stringent requirements for ancillary services.

Thermal power plants such as concentrating solar power (CSP), biomass and electricity from waste (EfW) have an important role to play in the full transformation from fossil to renewable electricity. This is because very few alternatives can provide security of supply. Thermal power plants maintain grid stability and provide power when the wind is not blowing and the sun is not shining, ensuring that the lights are always on.

EnergyNest at Cleantech Summit Energy Transition 2018

Our CEO Dr Christian Thiel attended Cleantech Summit Energy Transition in Rotterdam today. The summit is an initiative of the Tech Tour and the International Venture Club (IVC) and was hosted by the City of Rotterdam. It focusses on showcasing the best investment opportunities within the cleantech industry in Europe. The event included insightful discussion panels and keynotes and Christian even got to meet the King of the Netherlands.

EnergyNest at the 22nd Annual German Norwegian Energy Forum

Today our CEO Dr Christian Thiel joined the 22nd Annual German Norwegian Energy Forum in Berlin. The forum took place in the Norwegian Embassy where 140 experts discussed ways to reach the goals set out in the Paris Agreement. It was widely agreed that a mix of energy sources and energy storage technologies will be necessary in order to achieve the goals and to ensure security of energy supplies.

Enel and EnergyNest explore thermal energy storage opportunities

Rotterdam, October 22nd, 2018Among innovative technology providers developing a thermal energy storage system, Norway-based cleantech company EnergyNest is currently one of the partners selected by multinational energy provider Enel for the analysis of the benefits and impacts of the integration of its technology in one of Enel’s numerous power generation assets. According to EnergyNest, impressive economic and climate-relevant figures could be achieved by the company’s latest thermal energy storage technology when integrated in full-scale: annual CO2 reduction of up to 45,000 tons, 14 million liters of fuel oil saved per year and project payback in less than three years.

The collaboration launched with EnergyNest gives Enel the chance to evaluate EnergyNest’s Thermal Energy Battery solution in real-life conditions and identify full-scale business-applications for the technology integrated into thermal power plants. The objective of the innovative project is to demonstrate how waste heat recovery in Thermal Energy Storage can increase flexibility and sustainability of thermal power plants. This activity will allow Enel to assess technology robustness, its potential contribution to increasing efficiency and its positive environmental impact.

Last week, EnergyNest officially unveiled its first Thermal Battery Module, produced in its new manufacturing hub in Europoort, Rotterdam, on the site of partner Mebin. Manufacturing for two commercial projects is now expected to start at the end of the year. EnergyNest’s innovative battery modules consist of locally-sourced, recyclable materials – framed steel pipes set with Heatcrete, a high-performance thermal-energy-storing concrete developed in partnership with HeidelbergCement, Germany’s multinational buildings material company.

Download the Press Release EnergyNest and Enel PDF


Unveiling our Thermal Battery

Yesterday we celebrated the unveiling of our first commercial Thermal Battery module in Europoort, Port of Rotterdam.

A big thank you to Enel, HeidelbergCement, Mebin, Siemens, Eni, Uniper, Apex Heat Transfer, DNV GL, Eneco, Tata Steel, Yara International, Life Size Media, all our team and many other guests for making the event simply amazing!

We are very much looking forward to addressing 50% of global CO2 emitters together – mainly power plants and industrial manufacturing – with this new type of battery.

We’d also like to thank our panellists who discussed innovation in the thermal energy market: Ronel Dielissen-Kleinjans, Managing Director of our Europoort production partner and host for the day, Mebin, Dr Volker Klapperich, Product Manager Foundation Engineering at HeidelbergCement, Valentina Ferrara,  Open Innovation, Start-ups and Partnership Global Thermal Generation at Enel, and last but not least Stijn Santen, Dutch energy efficiency ambassador and owner of CO2-Net.

EnergyNest Thermal Battery Unveiling
Founder Prof Pål G. Bergan, CEO Dr Christian Thiel and Chairman Harald Norvik ready to unveil the Thermal Battery